
 Application Report

 AN002- June 2021

AN002 – June 2021 16-Bit Loop Unrolling Standard Deviation 1 |

 Loop Unrolling Standard Deviation
 Software Modules

ABSTRACT

This routine implements an unrolled 16-bit ‘mean of difference’ standard deviation
calculation. It allows the developer to calculate the standard deviation for an input of 16-bit

values. This calculation uses loop unrolling in the average calculation and subsequent mean of

difference calculation to optimize performance.

Contents

1. Introduction………………………………………………………………………….1

2. Software Interface……………………………………………………………..…1

3. About Simma Software………………………………………………………...3

1 Introduction
This routine is designed to help the developer save time on calculating standard deviation. It

uses the method of unrolling, instead of using a method of iterative loops. In other words, it

buffers eight numbers at the same time.

1.1 About Standard Deviation
Standard deviation is a measurement of variability used in statistics. It helps to show how much

variation there is from an average value.

1.2 About Loop Unrolling
Loop unrolling is a technique used to optimize program executions when summing a function. It

reduces the instructions to be run by running certain instructions in parallel. Loop unrolling has

several advantages, including significant reduction in execution time and the potential to be

implemented dynamically.

2 Software Interface

All software was written in C. This routine uses loop unrolling to provide optimized average

value and standard deviation calculations.

2.1 Source Code
The archive for this software contains all the necessary header files to enable the code and run

the functions: stddev.c and stddev.h

2.2 Software Flow
The program accepts 16-bit values, and then uses loop unrolling and buffers to average eight

values at a time. It then uses the sum to calculate the mean of difference.

2.3 Header File – ‘stddev.h’
 extern uint16_t

https://www.simmasoftware.com/software/stddev.c
https://www.simmasoftware.com/software/stddev.h

 Application Report

 AN002- June 2021

AN002 – June 2021 16-Bit Loop Unrolling Standard Deviation 2 |

 avg16 (uint16_t *buf, uint16_t size);

 extern uint16_t

 stdev16 (uint16_t *buf, uint16_t size, uint16_t avg);

2.4 Source Code – ‘stddev.c’
 /*

** Implements an unrolled 16-bit 'mean of difference' standard deviation.

*/

#include <stdint.h>

#include "stddev.h"

/*

** Calculates a 16-bit average for a 16-bit data set.

*/

uint16_t

avg16 (uint16_t *buf, uint16_t size)

{

 uint16_t cnt = 0;

 uint32_t accum = 0;

 cnt = size;

 /* calc the average (unrolled loop for speed) */

 while(cnt >= 8) {

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 accum += buf[--cnt];

 }

 /* calc the average */

 while(cnt--)

 accum += buf[cnt];

 return (accum/size);

}

/*

** Calculates a 16-bit 'mean of difference' standard deviation.

*/

uint16_t

stddev16 (uint16_t *buf, uint16_t size, uint16_t avg)

{

 Application Report

 AN002- June 2021

AN002 – June 2021 16-Bit Loop Unrolling Standard Deviation 3 |

 uint16_t cnt = 0;

 uint32_t accum = 0;

 cnt = size;

 /* calc the average of the differences (unrolled loop for speed) */

 while(cnt >= 8) {

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 cnt--; accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 }

 /* calc the average of the differences */

 while(cnt--)

 accum += ((buf[cnt] > avg) ? buf[cnt]-avg : avg-buf[cnt]);

 /* return the average difference */

 return (accum/size);

}

3 About Simma Software, the SAE J1939 and UDS Experts
Simma Software, Inc. specializes in real-time embedded software for the automotive

industry. Products and services include protocol stacks, bootloaders, device drivers,

training, and consultation on the following technologies: J1939, CAN, CAN FD, J1587, J1708,

J2497, J1922, J1979, ISO 15765, OBD-II, CANopen, UDS, XCP, NMEA2000, and Secure Boot.

http://www.simmasoftware.com/j1939.html
https://www.simmasoftware.com/iso-14229-uds.html

