

ssLIN-Slave
User's Manual

Created by the J1939 Experts!
Visit our LIN Software page.

Version 1.0 - December 11, 2015
© Copyright 2015 - Simma Software, Inc.

https://www.simmasoftware.com/lin-software.html

 P a g e 2 | 23

ssLIN-Slave User’s Manual

ssLIN-Slave Protocol Stack License

READ THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT CAREFULLY BEFORE OPENING THE PACKAGE
CONTAINING THE PROGRAM DISTRIBUTION MEDIA (DISKETTES, CD, ELECTRONIC MAIL), THE COMPUTER SOFTWARE
THEREIN, AND THE ACCOMPANYING USER DOCUMENTATION. THIS SOURCE CODE IS COPYRIGHTED AND LICENSED
(NOT SOLD). BY OPENING THE PACKAGE CONTAINING THE SOURCE CODE, YOU ARE ACCEPTING AND AGREEING TO
THE TERMS OF THIS LICENSE AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY THE TERMS OF THIS LICENSE
AGREEMENT, YOU SHOULD PROMPTLY RETURN THE PACKAGE IN UNOPENED FORM, AND YOU WILL RECEIVE A
REFUND OF YOUR MONEY. THIS LICENSE AGREEMENT REPRESENTS THE ENTIRE AGREEMENT CONCERNING THE
J1939 PROTOCOL STACK BETWEEN YOU AND SIMMA SOFTWARE, INC. (REFERRED TO AS "LICENSOR"), AND IT
SUPERSEDES ANY PRIOR PROPOSAL, REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES.

1. Corporate License Grant. Simma Software hereby grants to the purchaser (herein referred to as the “Client”), a royalty free, non-
exclusive license to use the LIN protocol stack source code (collectively referred to as the "Software”) as part of Client’s product.
Except as provided above, Client agrees to not assign, sublicense, transfer, pledge, lease, rent, or share the Software Code under
this License Agreement.

2. Simma Software's Rights. Client acknowledges and agrees that the Software and the documentation are proprietary products of
Simma Software and are protected under U.S. copyright law. Client further acknowledges and agrees that all right, title, and interest
in and to the Software, including associated intellectual property rights, are and shall remain with Simma Software. This License
Agreement does not convey to Client an interest in or to the Software, but only a limited right of use revocable in accordance with
the terms of this License Agreement.

3. License Fees. The Client in consideration of the licenses granted under this License Agreement will pay a one-time license fee.

4. Term. This License Agreement shall continue until terminated by either party. Client may terminate this License Agreement at
any time. Simma Software may terminate this License Agreement only in the event of a material breach by Client of any term hereof,
provided that such shall take effect 60 days after receipt of a written notice from Simma Software of such termination and further
provided that such written notice allows 60 days for Client to cure such breach and thereby avoid termination. Upon termination of
this License Agreement, all rights granted to Client will terminate and revert to Simma Software. Promptly upon termination of this
Agreement for any reason or upon discontinuance or abandonment of Client’s possession or use of the Software, Client must return or
destroy, as requested by Simma Software, all copies of the Software in Client’s possession, and all other materials pertaining to the
Software (including all copies thereof). Client agrees to certify compliance with such restriction upon Simma Software’s request.

5. Limited Warranty. Simma Software warrants, for Client’s benefit alone, for a period of one year (called the “Warranty Period”)
from the date of delivery of the software, that during this period the Software shall operate substantially in accordance with the
functionality described in the User's Manual. If during the Warranty Period, a defect in the Software appears, Simma Software will
make all reasonable efforts to cure the defect, at no cost to the Client. Client agrees that the foregoing constitutes Client ’s sole and
exclusive remedy for breach by Simma Software of any warranties made under this Agreement. Simma Software is not responsible
for obsolescence of the Software that may result from changes in Client’s requirements. The foregoing warranty shall apply only to the
most current version of the Software issued from time to time by Simma Software. Simma Software assumes no responsibility for the use
of superseded, outdated, or uncorrected versions of the licensed software. EXCEPT FOR THE WARRANTIES SET FORTH ABOVE,
THE SOFTWARE, AND THE SOFTWARE CONTAINED THEREIN, ARE LICENSED "AS IS," AND SIMMA SOFTWARE DISCLAIMS
ANY AND ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

6. Limitation of Liability. Simma Software's cumulative liability to Client or any other party for any loss or damages resulting from
any claims, demands, or actions arising out of or relating to this License Agreement shall not exceed the license fee paid to Simma
Software for the use of the Software. In no event shall Simma Software be liable for any indirect, incidental, consequential, special,
or exemplary damages or lost profits, even if Simma Software has been advised of the possibility of such damages. SOME STATES
DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY TO CLIENT.

7. Governing Law. This License Agreement shall be construed and governed in accordance with the laws of the State of Indiana.

8. Severability. Should any court of competent jurisdiction declare any term of this License Agreement void or unenforceable, such
declaration shall have no effect on the remaining terms hereof.

9. No Waiver. The failure of either party to enforce any rights granted hereunder or to take action against the other party
in the event of any breach hereunder shall not be deemed a waiver by that party as to subsequent enforcement of rights or
subsequent actions in the event of future breach

 P a g e 3 | 23

ssLIN-Slave User’s Manual

TABLE OF CONTENTS
Chapter 1: Introduction .. 4
Chapter 2: Integration of ssLIN-Slave ... 5
Chapter 3: ssLIN-Slave Driver API .. 6

3.1 Function APIs ... 7
3.1.1 linuartInit .. 7
3.1.2 linuartSend ... 7
3.1.3 linuartSendBreak ... 8
3.1.4 linRXISR .. 8
3.1.5 linuartSave ... 9
3.1.6 linuartRestore .. 9

Chapter 4: Configuration ..11
4.1 Frames ...11
4.2 Event Frames .. 13

Chapter 5: ssLIN-Slave API ... 14
5.1 Function APIs .. 14

5.1.1 linInitSlave ... 14
5.1.2 linSlaveUpdate ... 15
5.1.3 linReadUCPublish .. 15
5.1.4 linSetUCSubscribe ... 16
5.1.5 linSetEvent ... 16
5.1.6 linIsBusy .. 17
5.1.7 linRespError ... 17
5.1.8 linIsSleepy ... 18
5.1.9 linPost .. 18

5.2 Diagnostic API ... 19
5.2.1 linSlaveApp_init ... 19
5.2.2 linSlaveApp_readByIdent ... 20
5.2.3 linSlaveApp_dataDump ... 21
5.2.4 linSlaveApp_UDSreadByIdent ... 21

 P a g e 4 | 23

Chapter 1: Introduction

ssLIN-Slave User’s Manual

Chapter 1: Introduction

Local Interconnect Network (LIN) is a low cost, low speed network intended for small automotive
peripherals that makes use of traditional micro-controller based UARTS. The single wire, bi-
directional, half-duplex, asynchronous communication is capable of 19200 baud. The baud rate
is determined by the master. A typical network is made up of one master and many slaves.
The master is the only node that transmits a break signal, a sync byte (0x55), and then the ID.
Depending on the predetermined type of message, the master then transmits the remaining
message data or waits to receive an incoming message from the slave that has the
corresponding ID.

Filenames File Description

linSlave.c Core source file for ssLIN-Slave. Do not modify.

linSlave.h Core header file for ssLIN-Slave. Do not modify.

linCfgSlave.h ssLIN-Slave configuration file. Modification allowed.

linSlaveApp.c Source file for user application additions. Modification allowed.

linSlaveApp.h Header file for core interface to user functions.

linuart.h Header file for ssLIN-Slave driver prototypes

 Table 1: ssLIN-Slave Files

 P a g e 5 | 23

Chapter 2: Integration

ssLIN-Slave User’s Manual

Chapter 2: Integration of ssLIN-Slave

This chapter describes how to integrate ssLIN-Slave into your system. After this is complete,
you will be able to respond to publish and subscribe LIN messages. For implementation details,
please see the chapters covering the APIs.

Integration Steps:

1. Develop or purchase a LIN UART device driver which adheres to the ssLIN-Slave
API specified in chapter Chapter 3:: , page 6.

2. Before using any of the ssLIN-Slave module features, make sure the stack has

been initialized by calling linInitSlave (page 14). This, in turn, calls linuartInit
which sets up the UART from step 1 above (page 7). Typically it is called shortly
after power-on reset and before the application's main executive is started.

3. Call linSlaveUpdate at a fixed periodic interval (e.g. every 5 ms). This provides

the time base for the ssLIN-Slave stack. It is recommended that this function be
called at least every 5 ms. See the ssLIN-Slave API, section 5.1.2, page 15.

4. Configure ssLIN-Slave by editing linCfgSlave.h. See the Configuration chapter

Chapter 4:, page 11 for explicit details.

5. Modify and add functionality to linSlaveApp.c This file contains functions that are
called during LIN message handling. See chapter Chapter 5:: , page 14.

 P a g e 6 | 23

Chapter 3: ssLIN Driver API

ssLIN-Slave User’s Manual

Chapter 3: ssLIN-Slave Driver API

The LIN UART driver application program interface (API) is a software module that provides
functions for receiving and transmitting LIN bytes. Because UART peripherals typically differ
from one microcontroller to another, this module is responsible for encompassing all platform
dependent aspects of LIN communications.

The LIN UART Driver API contains four functions that are responsible for initializing the LIN
UART hardware and handling buffered reception and transmission of LIN message bytes. This
module also has two functions for handling data to/from the EEPROM. Since this a processor
specific module, these functions are found here. If your project already has EEPROM driver,
simply call your driver from these functions.

Function Prototype Function Description

void linuartInit (void) Initializes UART hardware

void linuartSend (uint8_t) Sends a byte to the LIN transceiver

void linuartSendBreak (void)
Sends a break to the LIN transceiver of
at least 13 bit periods

void linRXISR (void)
Receive Interrupt Service Routine.
Read one byte or break signal from LIN
UART.

void linuartSave (uint8_t *,
 uint8_t, uint8_t)

Save LIN configuration data to
EEPROM

void linuartRestore (uint8_t *,
 uint8_t, uint8_t)

Restore LIN configuration data from
EEPROM

Table 2: LIN UART Driver API functions

 P a g e 7 | 23

Chapter 3: ssLIN Driver API

ssLIN-Slave User’s Manual

3.1 Function APIs

3.1.1 linuartInit

Function Prototype:

Description:
linuartInit initializes the UART peripheral for reception and transmission of LIN data at
the desired network speed not to exceed 19200 bps. Any external hardware that needs
to be initialized can be done inside of linuartInit. The UART should be configured as no
parity, 1 stop bit, and 8 bit data. Receive (only) interrupts should be enabled. See LIN
Specification Package, Revision 2.2A, December 31, 2010 for additional bit timing.

Parameters:
N/A

Return Value:
N/A

3.1.2 linuartSend

Function Prototype:

Description:
linuartSend puts the value of its one argument into the transmission queue of the LIN
UART.

Parameters:
data: an 8 bit value to be sent via the LIN UART.

Return Value:
N/A

 void linuartInit (void);

 void linuartSend (uint8_t data);

 P a g e 8 | 23

Chapter 3: ssLIN Driver API

ssLIN-Slave User’s Manual

3.1.3 linuartSendBreak

Function Prototype:

Description:
linuartSendBreak generates a break signal of at least 13 bit periods on the output of the
LIN UART.

Parameters:
N/A

Return Value:
N/A

3.1.4 linRXISR

Function Prototype:

Description:
linRXISR is an interrupt service routine that is called when a character is received by the
LIN UART and the receive interrupt is generated. Due to the nature of the design of the
half duplex LIN bus, a transmit interrupt is not needed, only receive. This routine must
be able to determine if a break has been detected. For each byte received, the function
linPost(uint8_t) must be called with the received byte as the argument. If the received
byte was a break, then the global variable linBreak should be set true (non-zero) and
linPost called with its argument 0 (zero). If a framing error has been detected, set
linFrErr true, else reset to zero (false). See API section 5.1.9 , page 18.

Parameters:
N/A

Return Value:
N/A

 void linuartSendBreak (void);

 void linRXISR (void);

 P a g e 9 | 23

Chapter 3: ssLIN Driver API

ssLIN-Slave User’s Manual

3.1.5 linuartSave

Function Prototype:

Description:
linuartSave is a function that stores the data pointed to by buff into the EEPROM at the
address given by adr and length given by len. There are no returned status. This
function is called from linSlaveUpdate thread when a configuration command is received
from the Master.

Parameters:
buff: a pointer to an 8 bit array to be saved in the EEPROM.

len: an 8 bit value of the number of bytes to save.

adr: an 8 bit value of the offset to save the data in EEPROM.

Return Value:
N/A

3.1.6 linuartRestore

Function Prototype:

Description:
linuartRestore is a function that reads the configuration data in EEPROM at address adr
into an array pointed to by buff for length given by len. There are no returned status.
This function is called from linInitSlave to restore the configuration saved previously. If
the EEPROM is erased (first value is 0xFF) then the default configuration is used.

 void linuartSave (uint8_t *buff, uint8_t len, uint8_t adr);

 void linuartRestore (uint8_t *buff, uint8_t len, uint8_t adr);

 P a g e 10 | 23

Chapter 3: ssLIN Driver API

ssLIN-Slave User’s Manual

Parameters:
buff: a pointer to an 8 bit array to receive data from EEPROM.

len: an 8 bit value of the number of bytes to read.

adr: an 8 bit value of the offset to read the data in EEPROM.

Return Value:
N/A

 P a g e 11 | 23

Chapter 4: Configuration

ssLIN-Slave User’s Manual

Chapter 4: Configuration

This chapter describes all the configurable items of the ssLIN-Slave stack. The majority of the
ssLIN-Slave configuration is done in the linCfgSlave.h header file. There is not an automated
means to configure this Slave Stack, it is done manually by editing the header file. The
message schedule is held in a C structure. The developer must define the number of unique
unconditional and event frames that are sent each update period on demand. This header file
also declares the frame array, as such, do not include this header file in any other modules.

4.1 Frames

All frames, Unconditional and event frames, are defined in linCfgSlave.h. The total number of
frames is defined in macro LIN_NumFrames.

Timing is configured in the linCfgSlave.h. The value of LIN_TicPeriod is the number of
microseconds between calls to the state machine, linSlaveUpdate(). The state machine must
be called periodically and with time precision between 1 and 5000 microseconds with 1000 the
norm. The value of LIN_FramePeriod is the number of milliseconds the state machine allocates
for each frame. Generally the frame period is more than 5 milliseconds.

Note: the LIN_FramePeriod allows the state machine to calculate a time out and return
to listening.

/* SET PERIODS here, MUST DEFINE */
#define LIN_TicPeriod 1000 /* microseconds */
#define LIN_FramePeriod 45 /* milliseconds */

/* Schedule Table Size, MUST DEFINE */
#define LIN_NumFrames 3 /* number of frames in Main Table */

 P a g e 12 | 23

Chapter 4: Configuration

ssLIN-Slave User’s Manual

The allowable LIN frames are defined in a C struct array, auto-initializer declaration in the
linCfgSlave.h header file. Some fields are changed during run time, thus the structure must live
in RAM and not defined in ROM. A sample is shown here:

The sample main schedule table shown above defines three frames, one of each type.

The first frame (frame 1) is an unconditional, subscribe frame. This will be sent to the Master
when a request is received for ID 0x10. The terms Publish and Subscribe are master centric.
That is, a publish message is always from the master, a subscribe message is always to the
master.

The second frame (frame 2) is an unconditional, publish frame. This will cause the slave to
receive the data from the master if ID 0x15 is received.

The third frame (frame 3) is an event frame. Event frames are a type of subscribe frame. This
is the response frame for the master request with ID 0x25. Multiple slaves can support this
same frame. The slave only responds if the ready flag is TRUE. If more than one respond, then
the master will request the unconditional frames from each slave.

linSched_t linMainSched[LIN_NumFrames] = {

 { /* frame 1 */
 LIN_SUBSCRIBE, /* publish / subscribe / event */
 LIN_ENHANCED, /* checksum Enhanced (v2.x) or Classic (v1.x) */
 FALSE, /* no data yet */
 LINprotectID(0x10), /* ID */
 2, {0,0,0,0,0,0,0,0} /* data length and area */
 },
 { /* frame 2 */
 LIN_PUBLISH, /* publish / subscribe / event */
 LIN_ENHANCED, /* checksum Enhanced (v2.x) or Classic (v1.x) */
 FALSE, /* no data yet */
 LINprotectID(0x15), /* ID */
 2, {0,0,0,0,0,0,0,0} /* data length and area */
 },
 { /* frame 3 */
 LIN_EVENT, /* publish / subscribe / event */
 LIN_ENHANCED, /* checksum Enhanced (v2.x) or Classic (v1.x) */
 FALSE, /* no data yet */
 LINprotectID(0x25), /* ID */
 4, {0,0,0,0,0,0,0,0} /* data length and area */
 }
};

 P a g e 13 | 23

Chapter 4: Configuration

ssLIN-Slave User’s Manual

Main Schedule Table Fields

Frame Type LIN_PUBLISH or LIN_SUBSCRIBE or LIN_EVENT. Publish type
frames are received from the master, and subscribe type frames are
sent to the master. The Event type allows for multiple devices to share
this Subscribe only frame period and the master will mitigate collisions.

Version LIN_ENHANCED or LIN_CLASSIC. A boolean value to use version 1.3
or earlier CRC calculation method or later enhanced method.

Status Set to FALSE. A boolean indicator of received Subscribed message
data or Event ready.

ID The PID (protected frame identifier) for the slave. Use the macro
LINprotectID(frame_ID) to set the parity bits in the message field.

Data length 1 to 8. Set the length of the data in the message.

Data Leave as eight zeros. The data buffer for the frame.

Table 3: Main Schedule Fields

4.2 Event Frames

Event frames are subscribe (send to master) frames that happen occasionally from multiple
nodes. The LIN master provides a means to read from several nodes during one time slot to
provide network efficiency. During the slot for the defined event frame any node on the network
cluster that has data for the defined ID can send. If multiple nodes send at the same time, a
collision occurs. To mitigate the collision, the master will then send all individual PIDs (protected
frame IDs) associated with the event to determine which nodes had collided. The related
unconditional subscribe frame must also be defined in the table to meet the LIN specification.

 P a g e 14 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

Chapter 5: ssLIN-Slave API

This chapter describes the application program interface (API) for the LIN Master stack. Use
the following API functions to manage your messages:

Function Prototype Function Description

void linInitSlave (void) Initializes LIN stack and hardware

void linSlaveUpdate (void) Processes received frame

uint8_t linReadUCPublish (uint8_t fidx,
 uint8_t *data)

Read incoming data from master output
frame

uint8_t linSetUCSubscribe(uint8_t fidx,
 uint8_t *data)

Write outgoing frame data

uint8_t linSetEvent(uint8_t fidx,
 uint8_t *data)

Write event frame data

uint8_t linIsBusy(void) Test state of LIN machine

uint8_t linRespError(void) Read the communication error state

uint8_t linIsSleepy(void) Return status of sleep

void linPost(uint8_t data) Post received character to LIN core

Table 4: API functions

5.1 Function APIs

5.1.1 linInitSlave

Function Prototype:

Description:
Call this once before anything else to initialize the UART and the LIN slave stack. This
function also reads the configuration saved in EEPROM.

Parameters:
N/A

Return Value:

 void linInitSlave (void);

 P a g e 15 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

N/A

5.1.2 linSlaveUpdate

Function Prototype:

Description:
This function must be called periodically and with precision with the period defined in
linCfgSlave.h. Once every 5 milliseconds is a good choice. This drives the message
processing state machine and message time outs.

Parameters:
N/A

Return Value:
N/A

5.1.3 linReadUCPublish

Function Prototype:

Description:
Read the data that was published from the master that was sent in a periodically
scheduled slot defined as an unconditional published frame.

Parameters:
fidx: the index of the frame defined in the main schedule (linMainSched). Indexes are

zero based.

data: a byte buffer containing your new data to be read from the frame. This must be at
least as long as the data defined in the table.

Return Value:
0: (FALSE) successful

 void linSlaveUpdate (void);

 uint8_t linReadUCPublish(uint8_t fidx, uint8_t *data);

 P a g e 16 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

1: found, but data is old
2: error, not found

5.1.4 linSetUCSubscribe

Function Prototype:

Description:
Write the data to be sent to the master in this unconditional subscribe frame.

Parameters:
fidx: the index of the frame defined in the main schedule (linMainSched). Indexes are

zero based.

data: a byte buffer containing your new data to be saved in the frame. This must be at
least as long as the data defined in the table.

Return Value:
0: (FALSE) successful
1: error, not found
2: error, busy sending this frame

5.1.5 linSetEvent

Function Prototype:

Description:
Write the data to be sent in a periodically scheduled slot defined as an event frame.

Parameters:
fidx: the index of the frame defined in the main schedule (linMainSched). Indexes are

zero based.

data: a byte buffer containing your new data to be saved in the frame. This must be at
least as long as the data defined in the table.

 uint8_t linSetUCSubscribe(uint8_t fidx, uint8_t *data);

 uint8_t linSetEvent(uint8_t fidx, uint8_t *data);

 P a g e 17 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

Return Value:
0: (FALSE) successful
1: error, frame not found
2: error, busy sending this frame

5.1.6 linIsBusy

Function Prototype:

Description:
Returns the status of transmission of data. This is usually called after a busy error from
one of the set functions (linSetUCSubscribe(), linSetEvent()). Since the message state
is driven by the receive interrupt, the application can spin on this status until false.

Parameters:
N/A

Return Value:
0: (FALSE) not busy
1: (TRUE) busy

5.1.7 linRespError

Function Prototype:

Description:
This function reads and clears the error status of the LIN bus. In this way, a slave can
report the status (in a Boolean fashion) of any data errors on the bus. The user
application then can return this value in any of its subscribe frames.

Parameters:
N/A

 uint8_t linIsBusy(void);

 uint8_t linRespError(void);

 P a g e 18 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

Return Value:
0: (FALSE) no errors
1: (TRUE) an error has occurred

5.1.8 linIsSleepy

Function Prototype:

Description:
This function returns the state of the LIN core. A TRUE return means that the LIN slave
has received the sleep command, or that the LIN bus has been idle for more than 4
seconds. The application should perform the processor required steps to enter into
sleep mode. The processor should also be configured to wake on a change to the LIN
bus from idle to active (high to low transition).

Parameters:
N/A

Return Value:
0: (FALSE) not ready for sleep
1: (TRUE) ready for sleep

5.1.9 linPost

Function Prototype:

Description:
This function must be called with the data received in the LIN UART receive ISR
(interrupt service routine). It is also expecting the global variables linBreak, and linFrErr
to be set true (non-zero) or false (zero). The global variable linBreak is set if a break
condition is detected. The global variable linFrErr is set if a framing error is detected.
Otherwise these variables should be cleared.

 void linPost(uint8_t data);

 uint8_t linIsSleepy(void);

 P a g e 19 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

Parameters:
data: the byte received by the UART. The value shall be zero for break condition.

Return Value:
N/A

 P a g e 20 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

5.2 Diagnostic API

If expanding on the diagnostic API be sure to configure LIN_DIAG_BUFFERSIZE in
linCfgSlave.h. Otherwise, set this value to a low value of 8 to conserve memory allocation and
remove the sample code from handlers in linSlaveApp.c.

Several diagnostic callback functions are defined in linSlaveApp.c. This module
contains all the optional diagnostic functions and is intended for customer modification.
These functions are called in response to messages received from the LIN master. The
functions are called from linSlaveUpdate and are not during interrupt processing. In
addition, the product ID, functional ID, variant ID, and serial number are defined in this
module. If some of these IDs are not stored in program space, then code must be
added to recall these values and store them in the temporary variables provided. See
function linSlaveApp_init, below.

Function Prototype Function Description

void linSlaveApp_init(void) Initializes application level variables

uint8_t linSlaveApp_readByIdent(uint8_t id) Response to diagnostic function B2

void linSlaveApp_dataDump(uint8_t *buff) Response to diagnostic function B4

uint8_t linSlaveApp_UDSreadByIdent(
 uint16 id)

Response to diagnostic function 22

Table 5: Diagnostic Functions

5.2.1 linSlaveApp_init

Function Prototype:

Description:
This function retrieves the product ID, function ID, variant ID, serial number, and initial
NAD from storage. The supplied code reads these values from constant arrays
(program memory). If these values are not to be stored in program memory due to the
method of the user's final manufacturing process, then the user must supply code to
move the values to the supplied temporary variables. Note, the LIN specification has

 void linSlaveApp_init(void);

 #define LIN_DIAG_BUFFERSIZE 24 /* set the maximum size of request msg + 2 */

 P a g e 21 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

fixed sizes for these values as indicated in the source code.

Parameters:
N/A

Return Value:
N/A

5.2.2 linSlaveApp_readByIdent

Function Prototype:

Description:
This function is called in response to diagnostic code B2. Identification codes zero (0)
and one (1) are handled by the LIN core and do not need to be addressed in this
function. This function handles any of the user identified codes 32 through 63. If a code
is handled, set the return value to zero (0). Add your handler code in the switch
statement provided, case 32 is shown as an example.

Response data must be moved to the array linDiagBuffer[]. The first byte of the array is
the NAD, which is found in the variable linNAD. The second byte must be the response
ID (RID) which for this function shall be 0xF2. The next bytes are your user data.
Finally, place the number of user data bytes plus 1 into the variable linDiagRqstFlag.
This will signal the core to send your data when the master requests a response. Note,
your entire response must be equal or less than the size specified in
LIN_DIAG_BUFFERSIZE.

Parameters:
id: identification number requested by the master.

Return Value:
0: successful, identification code handled.
1: identification code not handled, error response shall be sent.

 uint8_t linSlaveApp_readByIdent(uint8_t id);

 P a g e 22 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

5.2.3 linSlaveApp_dataDump

Function Prototype:

Description:
This function is called in response to diagnostic code B4. If applicable, the user may fill
in the buffer linDiagBuffer[] with the user data. The first byte of the array is the NAD,
which is found in the variable linNAD. The second byte must be the response ID (RID)
which for this function shall be 0xF4. The next bytes are your user data. Finally, place
the number of user data bytes plus 1 into the variable linDiagRqstFlag. This will signal
the core to send your data when the master requests a response. Note, your entire
response must be equal or less than the size specified in LIN_DIAG_BUFFERSIZE.

This function has example code to read the EEPROM based on the address found in the
first data byte of the passed request. The user must remove this response if it is not
desired. The passed request data is available through the pointer passed to this
function. If no response is desired, leave linDiagRqstFlag unchanged.

Parameters:
buff: a pointer to the 8 byte message sent by the master. Format: NAD, PCI, SID, data.

PCI is 6, SID is 0xB4, data is up to 5 bytes.

Return Value:
N/A

5.2.4 linSlaveApp_UDSreadByIdent

Function Prototype:

Description:
This function is called in response to diagnostic code 22, UDS (ISO14229). This

 void linSlaveApp_dataDump(uint8_t *buff);

 uint8_t linSlaveApp_UDSreadByIdent(uint16_t id);

 P a g e 23 | 23

Chapter 5: ssLIN-Slave API

ssLIN-Slave User’s Manual

message defines a 16 bit ID which is passed to this function. Two IDs are predefined in
the specification; 0 shall return the hardware version, 1 shall return the software version.
The example code provided shows the hardware version handler. It is up to the
customer to provide the handler code for these two identifiers. Add your handlers to the
switch statement provided.

Response data must be moved to the array linDiagBuffer[]. The first byte of the array is
the NAD, which is found in the variable linNAD. The second byte must be the response
ID (RID) which for this function shall be 0x62. The next bytes are your user data.
Finally, place the number of user data bytes plus 1 into the variable linDiagRqstFlag.
This will signal the core to send your data when the master requests a response. Note,
your entire response must be equal or less than the size specified in
LIN_DIAG_BUFFERSIZE.

Parameters:
id: identification number requested by the master.

Return Value:
0: successful, identification code handled.
1: identification code not handled, error response shall be sent.

